
MapGarbage
UnrealTournament Editor Add-On Builder

version August 2020
- english excluded from document -

Description:
This is an UnrealTournament Editor custom builder tool which operates in

Editor.

Purpose:
Trying to make Editor more smarter than its ameoba intelligence.
Some map fixings/repairs are time consuming and we may also have

glitches. Then if we use a builder like this we do the necessary maneuvers
with a few mouse clicks, we have enough fixes here for that type of
MonsterHunt game that is constantly brutalized with poor quality maps and for
a game without skills. Of course, we are not just talking about MonsterHunt,
we also have testing and reporting functions for other types of games when we
refer to the navigation network of the studied map or in the manufacturing
process. Another common attribute of this builder it's the ability or attempt
to eliminate duplicate actors which are not the best thing on a map after
copy-paste operations (even stealing assets from other maps). This feature
works or not depending on what kind of actors are duplicated. Actors type
InventorySpot duplicated can cause big problems and it's needed "manual
washing" of the map. Another tutorial for this will be another chapter to
discuss.

Operation:

By clicking the Right Mouse button on that Glass/TrashCan Icon from
Editor (setup explained later) you can open this Builder.
We have to mark True options which we want to launch and then clicking on
BUILD button shown. Once finished work or if some scroll visual problems from
Editor are showing up (Editor is a trash disregarding what you say anyway),

just close Builder and re-Open it (right click – in default OS's mouse
setup) in case that you still need it.

August 2020 Add:
First operation will open the log for printing basic explanations. Some

people cannot get what a builder does and how does it work, expecting builder
to do something without setting up an option to True and then builder won't do
anything.

Explanations for features:

Value Value dependent Explanations:

MyMap - This is main feature auto-completed for detecting
map. If this doesn't happen, name of LevelInfo actor
must be completed manually, eg: LevelInfo3 LevelInfo4
and so on.

bDoRemoveTrash - It's similar with Command OBJ GARBAGE

bRemoveNavNetwork - This option will delete Paths-Net for getting a clean
map (requires Save Map, Exit Editor, Re-Open, Re-Load
map) for removing all old references and old
reachspecs still hosted and not used (like
InventorySpot2000) for a future clean build. April
2020 - here you have some bytes cleaned up as well
not only paths are deleted.

bTryFixBadPaths - This option is based on pathing docs by Epic and
ignored by Epic :/ where any NavigationPoint should
have an optimal minimum 50 UU distance from other one
- this is mainly for PathNode class. It will blindly
remove such PathNode closer to other NavigationPoint.
This option will prevent crashing map in game by
removing navigation Network applying tweak and
building Navigation again.

bCheckUnReachPaths - This option scans All NavigationPoint Actors in map
if a Bot/Human pawn can reach at their location
properly – ramps checks in stage. Nodes placed too
high, even if have navigation data added based on
Scout tester, they might not be good for Bots. We aim
here normal maps addressing games on the ground not
air paths where creatures flying are using them.
However, air paths are not for ground pawns so they
are claimed UnReachable too. Nodes from water are
excepted and also teleporters without a destination
as long as they might be a destination. Air paths are
another chapter, not a subject to discuss here.
Sample of a plain stock bork is PathNode112 from CTF-
Command, there are more others but, because of
geometry type not all of them are causing troubles.
All what we need is trying to have a good placement
allowing Pawn to reach at Node Location correctly.
Method means a trace from node to the ground in
certain range. If ground is not found, Node might be
too high – method is not very accurate for all cases
but it doesn't hurt a map-check because it's faster
than looking at each Node one by one. So-called Bad
Results are logged.

bPreNavigAdHck - With this option used before starting to add
PathNodes (MANUALLY !!!), we can tweak their
properties until job is being done for making them
able to fit in small spots where Editor can still
link them but they don't fit there for placing – BIG
Junks in SMALL holes. Their look in game is normal by
default but... we have new routes set. Requires Bot
Pathing knowledge. Here we have other placement for
InventorySpot Marker toward inventories not like in
default build.

bBuildNavNetwork - Similar to command Paths Define used for Constructing
Paths Net using current PathNodes.

bCountReachSpecs - Explanation from the initial phase. The engine has as
constant in defining the navigation paths 3000
specifications of navigation called ReachSpecs. I am
inclined to believe that these specifications are
about the same in processing a route instigated by a
being/creature/pawn. If the map has more than 3000
ReachSpecs - a larger or more crowded one in
navigation points - it does not surprise me to see
the creatures behaving strangely when they follow a
target, in other words when jumping over the
capacities coded as constants in the engine we do not
have the right reactions while running the game. Some

of these constants crash the game when it passes the
defined limitations, for example Max_Points in
rendering operations.
These ReachSpecs are counted, including shortcuts,
these shortcuts are not shown by the Editor in
graphical mode but this builder shows them if we
randomly study some navigation points - we are
talking about maps that have the classic navigation
network. This helps us to simplify navigation a bit,
to place items after processing the navigation, or to
simplify it in various ways to limit ourselves to the
value of 3000 ReachSpecs. Until we build a clean
network we can use this builder to destroy the old
navigation and everything in the form of garbage
specifications, saving, shutting down the Editor,
reloading and setting up a navigation network as
simple as possible.

bShowSpecs - This is a debugger for paths before to test route in
game. Usually a suspect PathNode might block entire
route for Pawn. If you have a suspect or you are
curious about whatever point how is connected with
nearest Nodes, this feature will report connections
from that node and to that node and navigation
conditions for pawn roamer – should swim, jump, etc.
Default reachFlags are explained in more friendly
format using words, but also with numbers returned,
and an explained legend is logged too for any
advanced examination. Common navigation flags are
shown.

bUnLinkNavList - Map's NavigationPointlist is unlinked here. I mean
all NavigationPoint actors are not referencing
themselves, chained, after this task. Why would do
that ? Because you might need to drop InventorySpots
added into void, those items might not need paths
connected and were moved into void for not having
paths to/from them. If network is disconnected it has
to be reconnected back. Next feature is the cleaner
in cause. Actually this task is spread in two pieces
because map might have some coding stuff inside and
it will remap everything how wants dynamically – I
expect development here. ReachSpecs are not affected
because Points from void are not having navigation
data after all. After reconnecting network all Bots
and the rest of pawns should work properly.

bReLinkNavList - Previously disconnected Navigation chain is remapped
out of Navigation Points which are in void and have
no reachSpecs referenced. Yes, network is reduced
here. If you need some points previously moved in
void, don't forget to bring them back if you need
them (SpawnPoint, QueenDest) or they are deleted if
are left in void.

bVeloTeleporter - ZVelocity – has to be
completed with an usual positive
value 190, 220, ect.

Stock teleporters are automatically set with a
teleporting velocity on Z axis. Purpose is making Bot
to be thrown away for unblocking a teleporter.
Usually in stock team-games a bot might be really
annoying when hangs in teleporter. You can use here
even a kicker for ”Bot” class inside teleporter and
with a smaller radius than teleporter – allow coming
in.

bNoPtFromTeleporter - Eh, DevPath is adding a path from a teleporter to
another point than a destination Teleporter – not
those destinations without an URL defined that have
to be connected to next point. What's the deal ?
Creature might figure his road passing through
teleporter without needing of teleporting, similar to
a common PathNode – an outside path - and being
kidnapped away from required road to the target goal,
being teleported inside or thrown away by some
swJumpPad – lol. Cough, we can remove ALL these Out-
Of-Destination paths confusing A.I. by using this
feature. Here we have to look for alternate nodes
around or else creatures will have here a total
break. If this is confusing next update will have a
sample picture for explanations. Technically
Teleporters tagged have a destination purpose and
even might be working in two-way mode, these are by
default excepted from tweaking.

bCleanLocBytes - In plain stock Editor, we cannot see everything.
There are bytes with data stored having no purpose
for editing being run-time stuff such as OldLocation.
It surprises me to see these even taking map file
length with less good logic. When I deleted these
junks, I did not see any game impact at all, so I
added a feature for cleaning up to 0.000000 these
OldLocation coordinates x y z, we don't care what was

and where in building stage.

bFindXBrushes - I wrote this feature which might be helpful at a
moment. I found maps having two the same cubed
brushes, or even more in the same spot without
helping with anything, just making map more bigger.
We can have different brushes in the same spot, of
course, but we do care only about similar ones such
as 5 portals as water surface. I won't add map-
names...

bRemoveBullshit - It was pretty much "fascinating" to see new "mappers"
using Commanders and player types added in map with
no single purpose and neither any LOGIC. This command
will find these useless actors and perform their
removal.

bRemoveMonsters - For some default match which might go messy with
creatures added in map, this option will remove all
Pawns. Addressing normal DM and CTF map fixes. You
don't have to look where the nasty creature is, you
can push button and builder will do the task for you.

bCullTextures - This operates similar to command Texture Cull, but
without writing it in Console after ending mapping
work.

bTweakMHMovers bTweakMoverGroup
Is adding a Group for some
Movers – requires restart/reload
and activating new Groups
created.
bDoPawnOpenMover
Makes Movers Accessible by any
Pawn except Mission Critical
ones with bTriggerOnceOnly set.
bBadTrgMoverFix
Some Mission related Movers are
set TriggerControl creating dumb
errors when are linked with
Dispatchers and other stuff, a
mess which we can fix, AND MAYBE
FINALLY LEARNING THESE AFTER 20
YEARS...
bNoGrabMoverCheat
Cannot be something more
annoying than looking at a Bot
or a Player opening a critical
door without to do the job in
cause first - by CHEATING, lol,
originally USELESS added by Epic
:eye poking:

Used in MH Maps and doing what default mutators are
doing with movers and even more... Ideas of messing
up maps are a lot so this is fine tuning not an
entire fix.
Movers set for some group will need browsing groups,
refreshing and activating them, else you won't see
Movers.

bTweakMHFactory bChkMHFactAttack
This Factory can work as a
Trigger (if you don't have a
clue about this feature), while
Factory can be touched nasty by
a monster - the rest of items
spawned are pushed in combat
against another maybe the same
monster type - lousy battling -
by using this, we make a factory
to get a start only by Player
types, preventing monsters to do
a mess.

Some mappers think that Monster is Bot or such brain-
sh!t so we have badly messed up settings. We are
about to solve all 2 stock Factories screwed with a
normal setup... Enhancements might be welcomed...

bXCPostNavHck - Simple feature that can recover Inventories lost from
their InventorySpots after repeated using
XC_PathBuilder which seems to mess them up after a
second XC type paths build in whatever XC version -
This is part of XC_Engine if you have heard of it...
Hint ! By using this feature even if everything is
normal you can restore cylinder collisions for items
which were screwed as another option. This feature is
used in rare cases and it needs advanced actor
editing stuff for figuring if bug has been
encountered else it's not needed.

bBoostAmmo3X - Discarding regenerators "rule", this map might have a
game play as it is, however, because stuff for MH
battling might be a lot, ammo from map might have a
3X load and 3 times faster default RespawnTime (if
you know what the heck is about, if not - read
mapping tutorials !!! And learn stuff after years of
doing TRASH)

bFixFallingAmmmo - Ammo placed in map in some adjusted higher spot and
which are falling due to their properties are
adjusted to stay in spot as in design requests
without to fall.

bHideSpriteActors - Actors having Sprite type diplay (lights, triggers,
etc) are going to be set for not being shown -
purpose is to look at map closer to how do it looks
in game. We are taking in account default set ones
not customized ones.

bUnHideSpriteActors - Actors previously "hidden" are going to be shown
back.

bReplaceActor ReplaceType
Typing Actor's Class Name
exactly, and Editor will
complete it... Actor that needs
replaced.

WithType
Using a class from a package
previously loaded typing class
name, also Editor will complete
entire class definition for
Actor used as replacement for
above one.

Wheew ! Self explanatory... This is able to replace
something selected from map with another thing (that
has to be loaded first in Editor !!!). As a sample,
we can replace a nasty PupaeWarrior having errors
with a default one letting admins to do the usual
server tunning. A lot of actors are suitable for this
task including one from MyLevel with other from
MyLevel.

bSPawnTweaks MaxHealthAllowed
Separate feature for removing
4,000,000 Health from whatever
Dinosaur from whatever "joke"
type mapping idea.
Must specify value or else it
will cap to 100,000 by default.

This is pointed to ScriptedPawn types - monsters. In
random moments of checking stuff, you'll find dumb
settings done at monster properties, might be hard to
check each monster one by one. These settings might
go very unhealthy for a game-server. You can adjust a
few of them (or more).

bNoRotateWeapon ChangedRespawn
As an add-on, we can define
RespawnTime for weapons, visible
when server/game is being set
with bWeaponStay False - I'm not
gonna explain 2 pages what is
about...

Pretty useful for mapper who wants Weapons to stay
without rotating. Some of those turds were screwing
up things making mutators to get messy and even the
game-play, because they have no clue about Editor and
UScript anyway.

bTrySolveLocation - Addressing common actors mapped which are intended to
stay in space using FIXED values for their X,Y,Z
Location in 3D space rather than floating numbers
which are involving additional bits for no purpose.
It's a sort of align to grid.

bRoundCylinder - Again a feature for fixed values rather than floating
ones for actors. Some decorations, Queen as sample
might use those X.999967 things for their collision
cylinder and are really pointless for processing
collisions. Collision is rounded to a nearby integer
value, there is nothing messed up here.

bReportActors - This feature will print in Editor.log file all actors
used in Level + how many they are. If you known bad
packages with screwed up Actors you can track log and
then searching for those added in Map and deleting
them once located.

bCheckItems - This feature is used for testing how are placed
Inventories in map, for a DM map if items are in
walls or such, InventorySpot is not added and that's
not a target for Bots. Then builder will try to
adjust their location and logging this action. If
builder did not solved problem, you can track evil
stuff by checking log.
First check is detecting in default technology, will
work in order to gain InventorySpot over Inventory,
if not, will try by shrinking tester pawn somehow
like DevPath does. If it's not successfull, it will
be reported accordingly.
Scout didn't fit – is a message for a bad inventory
which might be detected by this builder.
Majority of maps are working somehow using shrinking
and Editor can map paths here, but they can be RED
paths in such case. Builder is enough accurate at
this point predicting paths (recommending this usage
before building paths) as a debugger for preventing
more junks in map based on multiple builds.

bHidePlStarts HoleLength – value for hidding
into ground of those buggers in
order to not be mapped as valid
paths. I'm using 9000 or less
or, depending on map. And should
stay the same for next command
done after pathing map.

This feature might be used when map has a high load
in a spot – more NavigationPoint type actors which
might cause ugly pathing bugs. This is addressing
PlayerStart – for MH takes in account SpawnPoints
(aerial placement has no purpose) also QueenDest used
by Queen type monster and being part of navigation
array but they won't have paths as long as are
burried into ground at predefined distance – see
paramater. This has to be done BEFORE BUILDING PATHS.
Next feature will bring back buggers after – to do
after creating paths if this feature was used before.

bRestPlStarts HoleLength – the same value for
unhidding from ground of those

This does the reversal action of previous feature
described above. By using both of them in the same

buggers. It should be the same
with previous command unless
those points are going bugged
remaining into void.

time mainly no visible action will occur. These are
two different things. It uses the same value declared
for recovering from ground of hidden stuff. Restoring
points in original Location will be done AFTER
BUILDING PATHS. If PlayerStarts are forget into void,
map will be unplayable so here your logic has the
word. Out of logic = A Junk UNR file, not MAP.
So, when this feature is True, previous should be
False and viceversa.

Stages are as follows: Hide points buggers (above
command), create paths, Unhide points buggers
(current command). This builder has all needed
features toward removing paths and building paths, so
everything is doable from builder toggling values
True/False.

bStaticsReport - This feature will track actors from map if are badly
messed up by various "creative" ideas intended to be
cool but ruining net play as long as map will not be
the same as off-line, which means that a basic check
for borks is addressing actors bStatic and bNodelete
if are screwed up, so called edited aka mindlessly
ruined. Actor original bStatic screwed up as movable
won't be EVER seen in client, else a weapon set
bStatic for no rotation will do sucks with mutators
and such. Builder here will find borks reporting them
and then you can roll back evilized actors to
original stage and doing the right setup. MapGarbage
has a feature mentioned before for locking weapons
rotation in a friendly format and not noob style.

bScanCTFAltPaths - This is a check addressing CTF maps for AlternatePath
actors - usually map has a better A.I. play if it do
includes such things. Also it's a good thing if they
are balanced well. All info will be logged.

bSimAltPathPicking aTeam – this is specification
for which Team is tested
AlternatePath picking.

Here we have a CTF simulator in how a Bot might pick
an AlternatePath after Re-Spawn or not picking one.
It uses a similar code from CTF controller adapted
into builder. A single check is done by pressing
build button once, with this option set. Each time
when build button is pressed we are simulating a Bot
respawned picking such thing like it does in a CTF
match so if you want to check what is about
definitely build button has to be pressed many times.
I think this feature will except good minutes spent
testing a CTF map in run-time. In Editor, in a single
minute you might figure how are sorted AlternatePath
actors.
Another test would be when Bot is flag carrier but
that thing has to be implemented first. Probably
these tests are way pretty conclusive.

bRemoveNoReachPaths - This option removes from the navigation points the
items listed as visible and inaccessible paths by
creatures that cannot fly to reach them and who do
not have any navigation specifications not even if
they could fly, these points may have directives to
reach the current point, but the current point has no
reachSpecs for reaching them. I have successfully
removed these references and I have had no problem,
maybe I just got a smaller map talking about the size
on disk. April 2020 – other bytes from network will
be removed, previous Unreal Editors did not even use
these and maps are working. As for those poorly
pathed that's another story...

Recommedation for manual paths tweaking.
Use this option if you are doing major changes with
PathsLinker builder. Map should not use old internal
extra chained references. You can save an alternate
copy and check if something went wrong. ALL time a
new navigation point added will need to be chained in
main NavigationPointlist and reachspecs data added,
but other internal references at Uscript Level won't
match. By removing junks nothing goes damaging unless
you do damage yourself by deleting nodes and leaving
reachSpecs referencing them.

bCheckDuplicates bRemoveDuplicates – this is a
sub-option for check and will
cause attempting a removal of
duplicated actors.

Checking map for duplicated actors – for me those
maps are not healthy. This is a different option, you
will want to take in account GreenNote about this
option. After cleanning Actors with a dedicated Tag,
these will have to be checked because builder does a
reset at these ex-duplicated actors. Events connected
to these actors must be examined because cleaning
task it's based on working with Tags which are
defaulted after cleaning work.

bPurgeDupes2 - Used for a direct cleaning in a fresh loaded map.

This is an alternate cleaning solution – written a
bit different. Here Actors cleaned will have default
Tag like when mappers have added them. If these are
connected to some Events you have to re-edit the Tag
accordingly.

bScanTeamStarts - Can be used for CTF maps for checking how many
PlayerStart actors are assigned for each team in
order to balance start locations. Results are logged
– see console log.

bFindVoidBuggers - It causes a report toward actors placed into void
which have no usage that way – items,
navigationpoints, lights, decorations, etc. Note that
not everything placed into void is wrong. Triggers,
Keypoints, AmbientSounds are not having/causing
issues here unless are really far away from game
ground for no reason, only loading map with junk
actors.

bcheckZones - This will look if map has zoning problems, it shows
when two or multiple ZoneInfo actors are in the same
zone because map has leaks or has a bad setup.

bDisconnectN1toN2 - N1 N2 – parameters being
NavigationPoint's names for the
path that has to be nulified.
Must be defined or else nothing
will be done.
- bGet1stN1 – helper for auto-
completing selected node as N1;
- bGet2ndN2 – helper for auto-
completing selected node as N2.
During time when helpers are
used, main deconnector should
stay False. First we are
completing N1 and N2 and THEN we
disconnect them. These are
optional helping toward speed
operation.

As shown in name, the path going from
NavigationPoint1 to NavigationPoint2 will be removed
from Paths list and UpStreampaths. This is addressing
those paths making a bad angle with a ledge and
closer to a wall where Bot has problem or jumping is
causing loops. ReachSpec exist in map but is removed
from navigation like in the case of TranslocDest done
via stock UScript. We can use this option for Lift
Combos where bot is jumping and takes a lot of damage
restricting him from using that down-way – eg.
Disconnecting Path from a LiftExit to a LiftCenter
and Bot will go only from LiftCenter to LiftExit
because reversal is nulified. More explained in
BlueNote.
Auto completing might have a later reaction due to
GUI structures – see note below table.

bScanDefences - Performing a check for Team-Games specific maps in
order to count defensepoint actors – how many they
are for each team. Option will assign some textures
visible to these actors for being well visible. By
using this option again, they are reverted back to
default texture.

bStaticDecos - Some maps have destructible decorations set to
static. These usually create fragments that abuse the
engine operation because once set to bStatic, they
are not removed and continue to produce fragments. In
order not to ruin the look and the idea, we stabilize
these SELECTED decorations and marked bStatic = True
by transforming them into blockers that do not cause
any problems, being customized exactly as the
original decoration and removing it from the stage.
So we dispose of the garbage made by these altered
decorations.
Since May 2020 decorations out of bStatic can be also
morphed into non-spam actors.

bDoKickSound - An easy as a pie task for some kicker, not really for
multiple kickers in one spot, geniuses. You can use
ONE kicker with collision adjusted. This will map for
you that Jump Sound doing all setup for a selected
kicker. And no, we do not need any Trigger, Kicker is
capable to do an Event itself without external
support, just look at the damn code... it's english
not birdisch language.

bShowCharCodes - Might be needed some coding helper for certain
characters. It shows char code 0-255 and symbol
accordingly – logged.

bFindMapReachSpecs - This feature is an attempt (good to me) at showing
mainly ALL reachSpecs which a map might have –
happens after repeated not needed builds, leaving a
lot of junk data, structures which Editor won't show
unless you are deleting paths and log will report how
many reachspecs were eliminated. Here things are
different from previous feature because we don't see
only referenced in nodes reachspecs, we can have a
clue about all reachspecs. If it's a big map when
this is used I recommend hidding log or else it takes
time to render everything. If this process is
crashing Editor, this means that map has evil bytes
left.

Starting with August 2020, code here was a bit
adjusted because I found ugly things in certain maps
speaking about references from reachSpecs. These

could crash Editor and... depending on how much is
corrupted map-file, this stunt can be a crusher.
However, logging works and we can have a clue about
map's charge. Log Window is closed if it was open
during this check because logging hundreds of
reachSpecs takes ages. After finishing the task if
Editor is alive it will open Log Window itself.

bLevelLinks - It would have been one of commands, mythological in
the UT Editor, meant to show map links to other
servers or locations by reporting the URL from a
Teleporter.

bLevelValidateMap - The same myth type as above but it would do a check
for an empty Level – lol. PlayerStart-s and their
usage, Map's Title. Perhaps this would be a must-
have. This is a sort of reality for that never
working command, but at UScript Level.

Starting with August 2020 here are done basic checks
at TrapSpringer actors (if mappers have a clue about
using them) and also if map uses a DistanceLightning
which is crapped up in Net Games. It is recommended
replacing it with other stuff for servers. I wrote
such a Lightning fully functional.

bLevelFix - Another myth which refers at fixing some SoundRadius
– I don't now if prior versions of Editor were borked
at this point allowing dumb things to get thrown in
map. Perhaps this has no use in this environment but
it doesn't hurt being added.

bFindAnActor - ActorClass – name of class
which we want found, counted and
selected;
- ActorTag – name of Tag used by
Actors and/or class if specified
to be selected and counted.
At least one of these must be
defined.

I wrote this for figuring if exist whatever class,
else if exist a number of actors having a specified
common tag. By example SpawnPoint actors used in
MonsterHunt for a CreatureFactory it's pointless if
it goes at more than 16 per factory – n00b mapping.
Here are selected All Actors matching class and tag
or only tag or only class specified and also they are
counted and result logged. Here you can simply count
PathNodes or whatever actors with or without to
specify a tag.

Update June 2020

bCheckNavChain - When some map is developing a funky navigation crash
or it doesn't seems to work even if it's not
oversized, it worth a check if all navigation points
are connected into a navigation chain known as
NavigationPointList. If map is nothing like a special
one (with dynamic stuff embedded) this linked list
should be there with everything connected. If not,
map it's screwed up – no worries there are
mappers/non-mappers/fake mappers not knowing exactly
what they do at random.

bCheckFakeSpecs - Alternate check if everything does looks fine but
it's not. Some duplicated navigation actor might hold
valid reachSpecs but original one it's missing
creating a breach, with a fake NavigationPointList.

Update July 2020

bReplaceItems - NewItem – an Inventory
subclass defined as name for
selection replacement

Selected Item(s) subclass of Inventory can be
replaced here with NewItem defined as class-name eg:
ripper without quotes or anything if NewItem is
defined and bool set to True then hitting Build
button. This is not exactly a raw replacement, it
will copy relationship with InventorySpot in maps
pathed, which usually needs some manual work around
using advanced actor editing, and then rebuilding
paths might be damaging for custom tweaking. It will
make Bots to recognize new replaced item exactly as
it was the original old item.

bDownLights - IfMoreThan – byte field, max
255 for possible values
- AdjustTo – the same
- RadiusBigger – the same
- RadiusAdjust – the same

If map has bugging powerful lightning we can demand
all lights to be put down as follows:
- Any light with brightness bigger than value
IfMoreThan will have value AdjustTo.
- Any light having LightRadius bigger than value
RadiusBigger will be adjusted to RadiusAdjust.
Eg: 250 and 180 – everything bigger than 250 will
have 180 – in a single BUILD click.

bGridPlacement - Another ”align” feature uses a selected or more
selected things for putting them in 3D space at
whatever fixed coordinates. Not 12.134547 but
12.000000. Might be helpful for getting rid of extra
bits, placing certain PathNode exactly in the middle
of whatever tunnel without ”pixelling” numbers in
Actor's properties window. Just using builder, all
selected actors are moved at rounded coordinates.
Hint: those actors a bit pushed into ground and set

with bCollideWorld might be relocated correctly over
ground. For me this is helpful at relocating
PathNodes in lowered Locations, all having the same
height from ground and by adjusting collisions for
all, then using this later for locking them in fixed
places. Next move would be removing old location data
by using bCleanLocBytes option.

Update August 2020

bHlpAddActor - NearbyActor – An actor defined
as class-name eg. SpecialEvent,
which is added around a selected
actor from map at X Y
coordinates, Z being
configurable using...;
- ZPos – defined Z difference at
New Actor placed near the
selected one(s)

This option is used for adding another actor nearby
selected one, where the type of new added one must be
specified and also an optional height difference. By
example we can add a SpecialEvent to a Trigger
located in map leaving place for selecting them later
one by one, we don't need to put them exactly in the
same place, so we can use Z difference in UU
(UnrealUnits). These are not connected Event-Tag as
long as they can be different types with different
purposes.

bAddInvSpot - InvSpot – a custom subclass of
an InventorySpot which can be
connected as valid point using
builders for tweaking paths,
like PathsLinker or
XC_EditorAdds from XC_EngineV24;
- InvSpHeight – Height
difference (UU) on Z axis
between Inventory and
InventorySpot class added.

If we have a map where a new weapon or item is added
post pathing and custom tweaking and we don't need to
ruin the previous work, we can map for this item
automatically connected MyMarker-MarkedItem a plain
InventorySpot class or... a custom one having
whatever properties – item must be selected. All
advanced editing is not necessary, builder does the
relation between item and Navigation Point in a
blink, these properties are not normally visible for
editing but they can be seen using Advanced Actor
Editing.
Sample Commands: EditActor Name=”RocketPack12”
EditActor Name=”InventorySpot29”
To keep in Mind: Node is added but it will need to be
chained in NavigationPointlist – builder can do these
unlink>re-link things, here are needed also paths
to/from this new navigation actor, PathsLinker in
UGold can do these connections by generating user
defined reachSpecs.

bScriptHNode - Script Generators – more in Yellow Notes
Generates in Log a compilable script for a HuntNode,
subclass of PathNode. Can be used successfully in
MonsterHunt, but it requires compiling the script
which is recommended without MonsterHunt package
loaded. Original MonsterHunt won't help in compiling
assets and then you might want an external package
ready compiled and imported for usage. Advanced
mappers are the main audience here.

bScriptPathSwitch - Generates in Log a compilable script for a
PathsSwitcher subclass of BlockedPath that must be
compiled as well. It toggles paths when triggered and
it should not have shortcut paths over it.

bScriptBotJumper - Generates in Log a compilable script subclass of
Triggers aiming Bot. Stock Jumper class is aiming
Monsters, Bot won't react at that thing. If your Bot
needs to jump in some funky geometry stuff, this
trigger can be very useful. Usually where paths are a
bit forced and Bot has problems, a trigger working
with a small delay is a jewel. This one can be turned
off/on triggered, if situation requires this action.

bLoadAMyLevel - APackageName – here you need
to mention filename.extension
which will be morphed into a
MyLevel package for being mapped
in current session. Example:
swJumpPad.u
Note: Classes which are not used
are lost from map. In next
mapping session you won't have
them available any more and
later if you want these package
will need to be reimported.

According to custom scripts that are compiled in
packages aiming MyLevel, this option will operate
importing command for map's MyLevel – the pseudo-
package which belongs to map itself not as an
external package.
Any known file by UT located inside UT and defined in
Paths can be loaded and morphed in MyLevel, Textures
Sounds, etc.
Builder won't load anything which cannot be found in
Sand-Box aka UT install path. I did not tried another
drive or external path.

bAdvActorEdit - There are commands for opening properties for certain
actor. We do not need to write stories in console, we
are selecting target actor for editing and we use
this bool set to True followed by BUILD button. It
opens actor properties based on Name used by actor
not based on class definition.
Actually builder is writing a ConsoleCommand like
this: EditActor Name=”PathNode0”. That's why
PathNode0 must be selected. One actor at time.
This way you can see if a NavigationPoint has junks
or it doesn't have connections, you can adjust
PrePivot of a FlagBase, etc.

bCheckNoPasses - It does a check in Navigation Network testing if

there are elements without any incoming path, being
One Way. The deal is that not everything in stage is
damaging or critical, but in a CTF map such a
FlagBase has all chances to not be visited by Bots
very soon, unless map has all sort of craps around
Flag and the FlagBase is touching a Bot by mistake or
viceversa. In other case a PathNode in a tunnel or
small area if is a point important in a route, if it
doesn't have any incoming paths it might be a break
point, Bots not following that way. Such sample maps
are a lot but I won't nominate UNR Bot trashes here.
In MonsterHunt where SpawnPoints are higher for
Gasbags, technically these are not a big problem, but
I found some modified map where such a point was
breaking Bot attack (original was working well – the
edited one was ruined not edited), because that
SpawnPoint has generated a broken route without
having any incoming path. We can examine map and
focusing on Log instead of scrolling for finding
buggers.
___ A to do ?
Perhaps in future I'll do a report for supposed
EndPoints. Such Node usually has a single incoming
path. Bot coming here for some reason will never
return into Paths-Net – it's a rare thing but it
happens. Definitely a Weapon placed in a deeper hole
can cause such a scenario.

bDoTagMovers - This can be... a rare need. If Movers from a messed
up map are not having anything with paths and they
need to be tagged and you are getting tired of
developing names, movers having default tags are
going to be tagged with unique Tags that can be
easily copied at their combos for LiftTag values.

Misc. Reactions:
Builder like other ones might not have a quick GUI update especially

where values are auto-completed/removed, Editor is focusing usually where you
do mouse-clicks. By any matter values that are supposed to be auto-completed
must be checked with a click on that field/variable. Don't forget that Log
Window can be resized not like builder's one.

GreenNote:
bCheckDuplicates is addressing to perform a check into whatever Level for

duplicated actors. After this check Editor has to be closed without saving
map. This happens because behind this check you might have some Tags changed
and you don't want any modification here – this was a strategy in hunting
duplicated actors because they are really Evil in several cases. If builder
has logged duplicated actors you might record some names of duplicated actors
before cleaning them, Eg: Brush740.

Cleaning task: Editor restarted, map opened, builder set to True for both
these bools bCheckDuplicates and bRemoveDuplicates and push build button. At
end of task (if Editor is alive) SaveAs map with another name (using suffix
_healed or such). Close Editor and restart it, load map cleaned and look for
those Actors recorded like Brush740. This way I used because Evil duplicated
might go in deletion stage after a supposed cleaning done in multiple steps.
When map is saved like that you might see those duplicates vanished at next
load, gone for good. That's why cleaning must be done in this contest in a
single move and fresh loaded map for preventing unwanted deletions. Product
resulted should have other name saved immediately in order to keep original
map if builder has failed the cleaning task. As an EndNote I used this builder
to check a crusher map with said 68 Duplicated Actors – DM-!DSF!-Harbour-
Nights-v3-Rm.

In cleaned map you are supposed to open advanced properties for such an
old duplicated actor by writing in console something like in sample below

editactor name="Brush740"
if nothing happens, then said example Brush740 is gone, or if you can see it
in map definitely it might be bDeleteMe and it will be lost soon (by copy-
pasting it into a text editor you can see what I mean) – happens if you check
and clean and re-clean map multiple times in the same editing session. If you
don't want to screw up actors, clean a fresh loaded map and save it as a
temporary map. If temporary map reloaded in another fresh session is good,
then cleaning was successfull. Once again, make sure about a copy of evil map,
if you fail cleaning perhaps an alternate solution might help – manual washing
MAP in TEXT format.

Note: Version February 2020 might do some clean-up using any of both
methods in the same editing session, if this is a problem, try the clean work
described.

As for cleaning duplicates, you will need log window open and you can
repeat pressing build button until log is delivering a message tagged with
MapInGoodState. This might be needed in maps having more than two duplicates
of the same actor – even counting them it's not accurate. These are iterators,
I think it's better than nothing. However, I recommend a refresh after
cleaning map, like saving a copy of map, closing everything and opening Editor
again. Iterations operated here vs duplicated actors I'm not sure how stable
are leaving Editor which is far from having needed sanity checks – you have to
keep this in mind and refresh your working process.

BlueNote:
There are more maps where you can see a Bot moving around an edge and

hitting a wall, nothing happens in next minutes than retrying such a retarded
move because path declared there is claimed navigable, but it's not when it
goes in that angle with edge. Starting from now on this builder is capable to
remove such a path referenced in navigation network closing that route and
making Pawn to follow another way instead of constantly messing up in spot.
The simple way is to take in account named here Node1 and Node2 aka N1 and N2.
It will be a single path removed, that one from N1 to N2 leaving Path from N2
to N1 untouched – but which can be disconnected later, if it does exists. All
it needs is bool variable set to True and completing Names (under object
property for these) of said two nodes – Editor will complete entire definition
in the two TextBoxes. Log will say what reachSpec was there and removal
action. Path-Line still can be seen because reachSpec is not removed from map
but reference from nodes was removed as natively is doing TranslocDest in
games that do not include translocator. This option can definitely remove any
path direction and this way being capable to do real One-Way routes, for high
lifts where moron Bot is dying by jumping, etc, etc. Editor is not so friendly
with One-Way paths causing more or less PrunedPaths – shortcuts - which is

very stupid. If mapper wants a One-Way path he might have reasons for that –
builder does help here. For stock maps and plain servers solution would be a
Server-Actor helper in order to not screw stock maps but tweaking them in run-
time. I cannot say that bad reachSpec reference cannot be removed manually
when we are working at our map (some special case ?) but it's way easier to
record two names, writing them, hitting button and... job done. Left
reachSpecs listed in navigation node are wrapped/defragmented after removing
the evil one.

May-June 2020 info: This feature implemented in builder PathsLinker done
in the same time addressing UGold227(tested h) version, has the completed
feature at this chapter – it's really deleting evil reachSpec without any
recovery rewrapping/recounting all remaining reachSpecs. In this case map must
have actors compatible with UGold or else editing will be impossible. For MH
stage it's advisable some knowledge which MH actors must be removed and saved
elsewhere as text data, or else map won't load in UGold Editor, and adding
them back post editing/tweaking. MyLevels here need knowledge about "How To",
certain things are moved in 227 versions and not having any compatibility with
UT. Such MyLevel must be adapted with common codes. Example bTwoWay variable
different from UT to U227 – NavigationPoint vs AlternatePath, and here code
needs GetPropertyText, SetPropertyText functions or such, UT had modifications
which are not in Unreal but later newer BotPack had them added... not
everything is 100% UT compatible over there anyway...

Yellow Notes:
Any sort of script private for current loaded map addressing MyLevel must

be written and COMPILED.

If compiling returns errors due to some borked assets loaded in Editor,
uncompiled actor is not helping in any way. At bottom of Scripting Window the
result must be something like this...

For MH mappers it's advisable to compile and add new actors in map BEFORE
using original MonsterHunt package, or using a clean compiled MonsterHunt.
Situation is the same with other things that are ruined on purpose for
preventing devs to compile anything referenced at them.

In order to compile/create a new class scripted by builder, you need to
right-click on actor class which is parent (Triggers – here), choosing New,
writing as Package MyLevel and class Bot_Jumper. Now the script from Log
Window can be COPY-PASTE-d into Blue Scripting Window opened for new class.
Lines having "//" slashes and label for deletion can be removed for not
causing extra bytes loaded – you can even adjust code from Log as you need.
After having script copied we need to compile it. The compilation result must
be a Success, otherwise it wasn't compiled. Do not compile/create any stuff
dedicated to UT in UGold or whatever other game than UT.

The Info Piece: Current builder can be compiled, but not using plain UT
stock. This stock has a NO Deal with certain constants which are not a big
problem if are turned in variables and allowing to change values as Editor
does itself and C++ native functions embedded in UT. Not everything must be a
variable but some of these were... brain-farts against development.

Setup for Editor:
U File goes to System folder, bmp icon file goes to editorres Folder from

System (inside UT game used for modding) or whatever internal UT path for U
files. After these file handling operations, proceed to edit
UnrealTournament.ini file (default install). We have to find Section involving
EditPackages, and adding after all those definitions a new one:

EditPackages=MapGarbage

like in this sample fragment:
EditPackages=TarquinBrushBuilders
EditPackages=RahnemBrushBuilders
EditPackages=DavesBrushBuilders
EditPackages=ExtendedBuilders
EditPackages=XC_Core
EditPackages=XC_Engine
EditPackages=XC_EditorAdds
EditPackages=MapGarbage

That's all, if your Editor is not badly screwed, you might see icon
involved for working with new builder - yes, this is a custom so called

BrushBuilder but it doesn't do any Brush Building. The above task is not
required when we had a previous version installed - logically, the builder is
already configured.

Post Notes:

Note 1): Advanced mappers probably don't need such tool – or they do
because it's a debugger and helper.

Note 2): For uninstalling process, follow Installing steps in reverse.
Notes 3): Copyrights - All time I was "fascinated" about some Copyrights

for an utter GARBAGE called Map Editor aka whatever Map Editing app. For me
that is a toillete type application but it's needed in mapping - :/.
Given some said MapPurger done by Gizzy I was doing a similar thing for my
needs - and here it is, because I was reading about some ReplaceActor feature
mentioned in a description (FALSE Information) but which never existed... and
coding solution is similar.

Note 4): Enhancements and adds - Edit this tool and use it as you like...
a button pressed it's faster than editing actors.

Note 5): Some Update might come as needed - it won't mismatch anything.
This is a tool for help editing Maps, not for Servers/Players so I'm not gonna
spread 100 builder name types because are not needed multiple records but a
single advanced one it's always welcomed.

Note 6) This is not a mapping tutorial, neither a MH related one, but
it's a helper. If you have mapping experience not cube-drawing only, you might
understand the purpose of this tool and how does it helps. If you don't know
what Editor does having your mind into a complete fog, forget this tool. It is
addressing to help mapping not for learning mapping.

Note 7) All builder specific features used in the same time are proving
your insanity. All iterations and functions might go in opposite direction as
first thing, and then iterations limit will crash your Editor. Each function
of builder should be taken in account what it does and what it doesn't do.

Note 8) If builder has too many features you don't have to use all of
them or even to use builder after all. You can spend 2 years in Editor
"mapping" whatever UNR file which later goes messed up by too much creativity.
I witnessed such instances and I won't give names – yes, it happened not a
single time.

Credits: In order of appearance: Epic, Mappers from Epic (with their
funky pile of crap) I tested pathing add-ons in such Levels, Gizzy sampling
such builder and "How To", Higor adding some light to my brain, Barbie helping
me to translate numbers in words, team updating old Unreal to whatever v 227
showing me that fly reachFlag can be used in UT but UT Editor is too dumb for
this planet, various UT mappers making me to write such tools which are
facinating even after 20 years demonstrating how much they have "learn".

Misc: I was informed that for MH fixes or nasty bugs detections there are
way too many factors in account. Perhaps future version will have more options
if worth efforts. Why ? Intention from now days is to go over engine
boundaries and making more sh!t maps or creating more copies of the same trash
and then for such works there are not too many things doable – to not forget
stripping brushes and leaving a pile of crap called map, bugged and making
fixing harder.

Perhaps some of these features are not needed in future (UT469) or they
won't work – or several "fixes" will spit out warnings, clearly this was done
and used in common UT Editor.

As an Extra-Feature, I loaded this builder in Editor from UnrealGold
updated at version 227h. It looks operational, here I will do extra-testing
another time, main purpose it's UT Editor.

